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Abstract

In this first of two papers, computable a posteriori

estimates of the space discretization error in the finite

element method of lines solution of parabolic equations are

analyzed for time-independent space meshes. The effectivity

of the error estimator is related to conditions on the solu-

tion regularity, mesh family type, and asymptotic range for

the mesh size. For clarity the results are limited to a

model problem in which piecewise linear elements in one

space dimension are used. The results extend straight-

forwardly to systems of equations and higher order elements

in one space dimension, while the higher dimensional case

requires additional considerations. The theory presented

here provides the basis for the analysis and adaptive con-

struction of time-dependent space meshes, which is the sub-

ject of the second paper. Computational results show that

the approach is practically very effective and suggest that

it can be used for solving more general problems.

p..~



1. Introduction

In recent years interest has grown in the method of lines

(MOL) approach for the numerical solution of time-dependent

partial differential equations (PDEs) arising in biology, rhe-

ology, structural and fluid mechanics, and many other fields.

In this approach a problem is first discretized in space, for

example, by a Galerkin or difference method. This results in

a system of ordinary differential equations (ODEs) which can

be efficiently solved by one of the available variable-step,

variable-order ODE packages. This segmented approach is obvi-

ously practical, and modern ODE integrators are generally re-

liable in estimating and controlling the error due to the time

discretization. However, one is usually interested in the

total error, i.e. the error of the approximate solution with

respect to the exact solution of the original PDE. The advan-

tages of highly accurate ODE integrators are diminished if the

error due to the space discretization is large. Those avail-

able programs implementing both segments of the MOL approach

(cf. survey in [16]) generally have no facility to estimate

and control both components of the error.

Recently a MOL procedure, which we shall call the finite

element method of lines (FEMOL), was proposed for the solution

of parabolic PDEs (cf. [1]). Piecewise linear finite elements

in one space dimension were employed in a model problem, which

consisted of a second order homogeneous PDE, with smooth and

compatible initial data. Using the theory and practice of a
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posteriori error estimates developed for elliptic PDEs in

[2], [3], [4], and [5], an estimator for the space discretiza-

tion error was constructed. This estimator and a novel adap-

tive time discretization scheme were utilized to estimate the

total error in the FEMOL in the case of time-independent space

meshes.

We shall restrict our attention here to the space discre-

tization error in the FEMOL, i.e. the total error, assuming

that the resulting ODE system can be solved exactly. In any

given application this of course cannot be accomplished, and

the effects of the errors in the ODEs must be taken into

account. The purpose of this paper is to completly isolate the

space component of the error and means of estimating it. By

keeping the analysis independent of the time discretization

scheme, none of the state of the art ODE solvers are excluded

a priori when dealing with the important question of how to

properly balance the two components of the error.

In this first of two papers, it is assumed that the space

mesh remains fixed throughout the time evolution of the problem.

Using piecewise linear elements in one space dimension,we consider

the model problem of a second order nonhomogeneous parabolic PDE, with

initial data not necessarily smooth or compatible. For related results

with higher order elements in the setting of coupled systems of

equations in one space dimension see [8].

The results given here are extended in a second paper [7]

to analyze means of estimating the space discretization error
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when the space mesh is allowed to change discontinuously in

time. Based upon these estimates, a procedure is given there

for the control of the space discretizaticn error by the adap-

tive construction of space meshes during the solution process.

This algorithm is then tested in some computational examples.

The effectivity of the space discretization error estima-

tor constructed in [1] depends on properties of the exact solu-

tion in the space-time domain and is asymptotic in nature. We

give sufficient conditions and a priori bounds on the asympto-

tic range for this estimator to work. These bounds are overly

pessimistic for any given problem, and we shall see in some

examples that the results are much better than the theory pre-

dicts. Under less restrictive conditions and for all mesh

partitions, it is also shown that a modification of our prin-

cipal error estimator can be expected to perform well. This

modification takes more fully into account the case where an

exact solution has a strong time-dependence with respect to

the size of the mesh used.

This paper consists of the following sections. In section

2 notation, mathematical preliminaries, and the model problem

are introduced. In section 3 certain regularity classes are

defined and an accompanying theorem is proven, showing that

the model problem is well-posed. Based upon this proof and

result, in section 4 a priori estimates needed in section 5

are given. Our a posteriori error estimates are presented in

sections 5 and 6. Section 7 consists of the description of
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computational procedures used and examples.

Many of the required function spaces, results, and tech-

niques used in sections2-6 to prove our results are somewhat

technical. In order to facilitate a first reading of the

paper, we present here some basic notions and a sample of our

computational results. By then skipping directly to section

7, the reader should have a good overview of the main ideas

presented.

Let u = u(t,x) be the solution of the model problem

u t = f-Lu = f(t,x) +[a(x)u x]x -b(x)u; 0<x<l, t >0,

(i.I) u(t,x) = g(t,x); x = 0,I, t >0,

u(O,x) = U0(x); 0 < x < 1,

where a > 0, b a 0, uO , g, and f are given

functions.

The FEMOL solution of eqs. (1.1) is accomplished by parti-

tioning the interval (0,1) according to

A(N) = {0 = x 0 < xI < ... < XN = 1} and determining the unique

function U = U(t,x), which is piecewise linear in x and

smooth in t, and satisfies a weak, or integral form of eqs.

(1.1). For each t, U is characterized by the vector of its

values {U(t,x )}j=l,N-l' which is the solution of an N -1

dimensional ODE system, assumed here to be exactly solvable.

In the computational examples, the ODE systems were solved by

using successively smaller time discretization error tolerances,

r.. -.. -
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the process being terminated when all relevant quantities

experienced only insignificant changes in the time intervals

of interest.

For each t > 0 the goal is to estimate

(1.2) IIje(t, ')llI (f a(x)e 2(t,x)dx 1
0 x

where e u - U is the space discretization

error.

In order to estimate IIe(t,)III , we define the local error

indicators {rj1 (t)}j=l,N by

(1.3) 2t) Ix 2, x r2 (t,x)dx; I f j ! N,

12 a( 2  x) j-

where the residual r(t,x) (U t+LU-f)(t,x) is well-

defined and computable for each t > 0 on each sub-

interval (x.1lXj), given U.

The principal a posteriori error estimator E(.) is then

defined by

N 1/2
(1.4) E(t) I Tij t; t > 0.

To assess the performance of E(.), we define the effec-

tivity ratio

(1.5) O(t) = E(t)/j e(t, - )11 t > 0.



E(C) is an effective estimator if there exists a reason-

able constant C (depending on the admissible solution class

for eqs. (1.1) and the admissible class of mesh partitions to

which 6 (N) belongs, but not on the magnitude of the data

u0, f, or g) such that

(1.6) 1/0(t) f C; Vt > 0.

Moreover, it is desirable that

(1.7) G(t) - 1 as the partitions of (0,1) are refined.

In one of the examples of section 7, the exact solution of

eqs. (1.1) is taken to be

(1.8) u(t,x) = 2 + 1 tanh [2P(x-10t)]; P = 20,

which is a wave with approximate front width P_ that moves

in the positive x-direction at speed 10 (cf. figure l(a),

(b),(c)). For each of various values of N, the FEMOL was

implemented in this example by defining the partition A(N)

according to x = j/N; j = 0,N. The tables below illustrate

for various t the performance of E(t) as compared with the

relative error EREL(t), defined by

(1.9) EREL (t) jIe(t," )ill/Iu(t," .5j.
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TABLE 1. ERE (t)

t20 40 80 160

.032 .4325 .2634 .1308 .0649

.056 .5697 .2431 .1309 .0649

.060 .6437 .2818 .1309 .0649

.088 .3473 .2673 .1309 .0649

i*1

TABLE 2. G(t)

t 20 40 80 160

.032 1.320 .995 .989 .996

.056 .776 1.076 .989 .996

.060 .806 .903 .988 .996

.088 1.685 .961 .987 .996



I
- - -----

U ToO Tm.O T. I
U I S

0 . .
I e

I I

II I
/

x x x

(a) (b) (c)

Figure 1. Solution u(T,X) in Eq. (1.8) vs. X for various T.

The last three columns of Table 1 illustrate for each t

the expected linear rate of convergence for Jjje(t,.)jjj. For

N = 20 the mesh used is not fine enough to resolve the wave-

front and the errors oscillate about the 50% mark.

The numbers in Table 2 clearly illustrate the effectivity

of estimating fle(t,')III with E(t). While values for the

constant C in (1.6) on the order of 10 or more would be

acceptable in many applications, for none of the entries in

Table 2 is such a pessimistic bound realized. We see that

for about 13% or less error, the estimator E(.) differs

from IIje(.,.)l) by no more than about 1%, a truly remarkable

result.

These and other computational results are discussed more

fully in section 7. We again mention that the estimator

E(.) can be used in an algorithm, where decisions concerning

modifications of the space mesh are made adaptively during the

solution process. Provided that proper constraints are imposed,



9

this then leads to an implementation of the FEMOL which is

robust enough to adaptively modify meshes in the case of local-

ized activity, such as for the travelling wave above, and yet

is still efficient enough to handle problems where little or

no mesh modification is necessary.

-sas
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2. Mathematical Preliminaries and the Model Problem

Throughout this paper we shall use the convention that

the variables i, j, Z, m, N, p, and q take only

integer values.

Let J be a bounded open interval in M 1 , J its clo-

sure, and V be an arbitrary Hilbert space. We denote by

C 0(;V) those V-valued functions which are continuous on J,

C*CJ;V) the subset of infinitely differentiable functions on

J for which all derivatives have continuous extensions on J,

and C;(J;V) those functions in C (T;V) with compact sup-

port in J. When V = I 1  we suppress V and write C0 (j),

Cf'(C )
0

1-
Let I = (0,1) be the unit open interval in I, I its

closure, and [0,T) be a bounded half open interval in I 1

For ,* E C (M), set

I (x)(x)dx and ii5 20 < <k' >"

For each i 2 0 the Sobolev space Hi{H1} is the completion

of C(f){C'(I)} with respect to the norm

2 1 2
p=o 0

and for each real s £ 0, Hs with norm S is a Hilbert

space which is defined by interpolation as in [151.

Let a and b be sufficiently smooth functions on I

for which
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(2.1) 0 < a _< ax) - <-
_ Vx E I

(2.2) 0 _< b(x) < b <Y

1J

For u,v E H0  we define the bilinear form

(2.3) B(u,v) <aux ,vx> + <bu,v>.

By (2.1) and (2.2) 3 positive constants CIC 2  such
1' 2

that

2 <21(2.4) C211wll B(w,w) f- ClllWl~ l Vw E H ,

2and !iwFj E- B(w,w) defines a norm equivalent to 11-11 on

1
H0.

The operator L defined by

Lu -(au ) + bu

2 1with domain D(L) = H nH is the unique positive self-
0

adjoint operator induced by B. Using spectral rep-esentations

(cf. [9], [13], [14]) we can define fractional powers of L.

Results in [11] show that for a > 0, a/2 integer +1
4

(2.5) V(La / 2) {v E H a Lpv(x)Ix= 0 , 0;

Vp satisfying 0 <_ p < a/2 - 1/4}

and, as in (2.4),

(2.6) the spectral norm JIL /2. 011 is equivalent to 11I-1

a/2
on V(L )
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Let P be a family of mesh partitions of I and

A {O = x 0 < x <... < XN(A) = 1} E P.

For j = 1, N(L) we write

I (X . 1 ,xj) h. = x. - x. andI]jlJ j j-i'

h(A) minh. , h(A) max h.
1Ij:EN(A) I._5jjN(A)

P is said to be a K(k)-regular family if 3 constants K -i

X > 0 such that

(2.7) h(A) X K (a) VA E P.

Fo 0  1 C0(
, w E H , j = 1,N(A), and E C(f) we shall

write

v : f v2 (x)dx,

IIWIIIJ = .a(x)w 2x) + b(x)w 2(x)]dx, and

x.- +x.

Sj 2

For each A E P, S(A) cH1 is the subset of functions
0

whose restrictions to any I. are linear. The operators
0 1

P0  PI' LA mapping H 0 , H,1 S(A), respectively, to

S(A) are defined by
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A

<Po V-V,o> 0
0

A
(2.8) B(PlV-V, ) = 0 V6 (S(A).

L A  is a positive self-adjoint operator on S(A) satisfy-

ing

(2.9) LA(Plu) PACLu) Vu E D(L).

By (2.1) and (2.2) 3 a positive constant C such that

VO E S(A)

(2.10) IILA I 0 0 !5 CEIL I101E < 211,1,01

and if P is K(X)-regular

(2.11) IILAO 1 0 (C/X)h- (A) 11011E.

The following lemma is well-known (cf. [6, Chap. 4]).

Lemma 2.1. There exists a positive constant C such

that for each A E P

(2.a12
(2.12) H!IIPfivI Cha7s(A)IvIIa; Vv E (1 s

0 5 s _.5 1 f a 5 2)

(2.13) II(I-P 0 )vII 5 ChaC lv! Vv E D(L a2
0 0 a'

0 5 a '5 2, a* 1/2.

We shall consider the following model problem.

I . . . .. ~ ~~. ' ' ' ' I II I I II I
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t -u(t,x) + Lu(t,x) = f(t,x); t,x E (0,T) I,

(2.14) a u(t,O) = 0 = u(t,l); t E (0,T),

u(O,x) = u0 (x); x E I.

The data u0  and f are such that the solution

u(;u 0 ,f) of eqs. (2.14) resides in a certain regularity class

H, which will be specified in section 3.

1The weak form of eqs. (2.14) is: find u : (0,T) -, H 0

satisfying

<ut(t),O> +B(u(t),O) = <f(t),P>; VtO E (0,T) x H0 ,

(2.15)
u(O) = uO .*

For each A E P, the FEMOL solution UA : [O,T) - S(A)

is defined by

( <U (t),' > +B (U A (t),O ) = <f(t),'>; VtO ( (0,T) x $ ( )

(2.16) AA

UA(0) = U0 E S(A),

where U A is chosen to approximate u0  and is specified in
0

section 4. Eqs. (2.16) may be rewritten as

UA(t) + LAUA(t) PAf(t); t E (0,T),

(2.17)

(U (0) = U0,

and for reasonable data uo , f are equivalent to a uniquely

solvable N(A) - 1 dimensional ODE initial value problem.
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The following discrete smoothing property can easily be

verified (cf. [9]).

Lemma 2.2. Let U= U (;U6,0) denote the solution of
0'

eqs. (2.17) with P f 0. Then 3 a positive constant C
0

such that for i = 0 or 1

(2.18) U (t) n Ct -  11U111; Vt > 0, j 0 o.

Remark. When there is no threat of confusion, we shall

often drop a when writing S, h, P09 P!, U, and U0 .

Our work requires the use of the nonisotropic Sobolev

spaces H 2 s ', which we now define. For nonnegative 9 and

m, let H (J;H m ) be the completion of Cw(J;H ) with res-

pect to the norm

2 jIlull j J s3u(t, .)11 dt,

and define HC2Z'z M H0(j;H 2 ) n H (J;H ) with norm

IIUII i ~~I"HI 
0 C2Z ))2+

For each real s > 0 the space H2s 's(J) with norm

- 2s,s

is a Hilbert space which is defined by interpolation as in

[15]. We state in convenient forms some well-known trace and

embedding results.
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Theorem 2.1. (cf. [15, Thins. 1.2.3, 1.4.1, Prop. 4.2.3])

Let s 2t 0, v E H S'S(J), and j satisfy 0 !E j -_ s.

Then H2(s-j),(s-j)(J) and 3 a positive constant C

such that

- v 2( s - ,(s-j -j2s,s

Theorem 2.2. (cf. [15, Thms. 1.3.1, 1.4.2])

Let s > 1/2, v E H 2 s's(J), and j E [0,s-1/2). Then

lv E C0 (C;H2 (5> 1 /2 ) and 3 a positive constant C such

that

sup ajv(t .) . CvIIvII
' E 1v 12(s-j-/2) -2s,s

Theorem 2.3. (cf. [15, Thin. 4.2.1, Prop. 4.2.2])

Let s > 3/4, v E H 2 s's(J), t* E J, and j and p

satisfy 0 f_ j + p/2 < s - 3/4. Then

x:Oe, (13t* t~t IX:,11

We conclude this section by noting a useful partial ex-

tension of Lemma 2.1.

Lemma 2.3. There exists a positive constant C such that

for each A E P

IIKI-P6)aivI 05 Ch7CA)IjvW 2,; Vv E H21'P(J) n H0( J;H0 ),

. 5 + a/ 2 , j _ 0, 1 a f _ 2.

I -II I II I I I , ?I II I I I
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Proof. Set V IHO(J;V(L c/2)) Since C*(j;V(Lcr/2)

is dense in the Hilbert space V, I - P can be continuously

extended to an operator mapping V to H 0(J0). By (2.12) we

have

(219 -'iI\~ <ChA)IlWl 2 VW E V.
(2.11 0KIP1 0% 0 V(a/2)

It follows from the assumptions of the lemma, (2.5), and Thins.

2.1-2.3 that w =-vE V.

The application of (2.6) and Thin. 2.1 in (2.19) completes

the proof.
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3. Parabolic Regularity

Throughout the remainder of this paper, a and denote

arbitrary but fixed real numbers related to the data in eqs.

(2.14) and satisfy

(3.1) a > 1, -1 E a , 3,aa/2 9 integer + 1/2.

For real a, [,] denotes the integral part of a and

7'q = 0 for q < p.

We begin by defining for v E H g E Ha'a/2(0,T)

the p-order compatibility measure

[P /2+1/4 ] _

(3.2) M CR(v ,g) = I It IL z v(x) + (-l) p  L

x=O,l =0 p=l

p-i

a Ig(0 ) I'

which by Thms. 2.1 - 2.3 is well-defined.

The following facts concerning solutions u(;p,f) of

eqs. (2.14) with initial data p and right hand side are

well-known.

Theorem 3.1. (Existence; cf. [15, Thm. 3.4.1])

Let p E H0 , f H0 '0 (0,T). Then eqs. (2.14) have a

unique solution u(;,,f) E H 0(0,T);HI)

0

Theorem 3.2. (Regularity; cf.[15, Thms. 4.53, 4.62])

Let E E Ha+l E Ha ' a/ 2  and MCR(f) = 0.
. , f ( (0,T), and 3 a •Then u(;p#,f) E Ha+ 2 '(a+2 )/2 (0,T) and 3 a positive
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constant C such that

!l l ( 0 , T )  < C{ , + !If "I( 0 , T )

a+2,(a+2)/2 - Ia+
I  

Ga/2 "

Lemma 3.1. (cf. [13, p. 489], [14], and (2 .5))

Let f - 0 and E V(L(P+1)/2)). Then Vt > 0

u(t;p,0) E V(L(a+l)/ 2) and 3 a positive constant C such

that

u(t; ,p,0) lla+ I - C t-(a+l)/2

We therefore have

Theorem 3.3. (Parabolic Smoothing)

Let p, u(; p,D) be as in Lemma 3.1 and 0 < T, < T.

Then

(3.3) u(;v,0) E H a+2,(a+2)/2(T,,T) and 3 a positive

constant C such that

(T ,T)
(3.4) I!u( ;p, 0) 1 + (E C T (1 +c+2,(a+2)/2 ~+

Proof. By Lemma 3.1 u(T,.;p,0) E V(L(a+l)/2), which

is equivalent to MCRau(T,O;,0),0) 0. By applying Thm. 3.2

to the interval (T,,T) we have (3.3) and

(T, ,T) < CI11u(T..;T, 0)1I +fl (;u T ; ,0) ) a+2, (a+2) /2  -a..

by Lemma 3.1 < C T-(a+l)/
2  I34l

. -
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We now define certain regularity classes for data and

solutions of eqs. (2.14) in order to combine Thms. 3.2, 3.3

for use in Section 4. Set

(3.5) ID ' (0T v,g E H +  × H '/ (0,T):M PR(v,g) = 0 .

For v,g E D a' (0,T) and 0 - T, < T set

+ lgl(0,T)

(3.6) Z7 ( ,T..,T,v,g) = Ilvi + a, /2

and for v,g E ID (0,T) with P < a and 0 < T,. < T set

(3.7) 2 (P,T...,T,v,g) = (1+T, -(a+ )/2)(MCR(0,g) + !IV!!+l )

+ !g! ( 0 , T )
a,a/2"

For 0 T, < T define

(3.8) H ' (T,.,T) {u E H+ 2 '(a+2)/2 (T,.,T):u = u(;v,g)

solves (2.14) for some v,g E ]D (0,T)},

and for u(;v,g) E Ha'P(T,,T) set

(3.9) C (P,T,,T,u) (P,T,,Tv,g).

By properly decomposing given initial d..ta we shall show

Theorem 3.4. Let 0 5 T, < T and u0 ,f E ],)'P (0,T),

where P = a if T, = 0. Then eqs. (2.14) have a unique

solution u(;u 0 ,f) E Ha'p (T,,T) and 3 a positive constant

C such that
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(T9 ,T) < C (PT.,.,Tu f) C C (;,T...,T,u).

(3.10) JUI a+2,(a+2)/2

Remark. The decomposition used in the proof of Thm.

3.4 will be used to demonstrate the a priori estimates of

Section 4.

Proof. The outline of the proof is as follows. Through

a sequence of elliptic boundary value problems we construct

functions u1 and u2 with the following properties:

1 2
(3.11) u0 0 uO ,

(3.12) u1 E H a+  and M CR(U1f) 0 0,
0 ~ a 0

(3.13) u0  E (L (P+ 1 ) / 2

and for which 3 positive constants C, C such that
2

I ,a+l if ,

(3.14) 'u 1  < C
MC if < a,

a

2 0, if P : a,

5 +I  _C 2 MCR(,f)+ u01P15 if 3 < a.

By linearity the solution u(;u 0 ,f) (whose existence is

given by Thm. 3.1) can be decomposed as
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(3.16) u u u ; u u(;u0,f),).

It then follows b-, Thims. 3.2, 3.3, (3.6)-(3.9), (3.16), an'

:he t:riangle inequality that u E H')(T,,) and

(0,T),2,
3 , + .(0, )

• - : 2,(a+2)/2 -I:+2,(z+2)/2 a+2,(a+2)/2

< C{ u l + I 0, T ) + T ( a + i ) / 2

2+,z/2

bV (3.14) and (3.15) < C
I .( +1) /2 )M CDR( ,f) + T., ( +1)12

++T

ou 0+1 if <

b (36-(39) (,T,T,u)

t remains therefore to construct u1 and u 2  satisfying
0 0

(3.1l)-(3.15) .

1 2
( 1 f )= a, set u 0  U0 and u = 0, and(3.18) 0'

Sif < a, set u 0  and u2 = u 0 - ,

where with i [Ca/2 + 1/4] 0 0, 9r z i , and the sequence

{z. }j=-iI is defined by:

0 and for j O,i zj solvesz J
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Lz.(x) z (X) ;x E I,3 zj-1

(3.19) - a

.(X) te ( - ! ) p Lp -3
p=I

I By Thms. 2.1-2.3 and elliptic regularity theory we have that

Wea no d E fi+ (Ln d som sucae pof i(.) wic r

n eIve constant C such

that

i-i
!I< c [ l : C R ~ o f

(3.20) 1*T H - xT,1stisie )

Properties (3.1l)-(3.18) are easily verified, thus completing

the proof of Thm. 3.4.

We now define some subclasses of Ha' (T.,,T) which are

needed in Section S.

For 1 > 0 set

(3.21) Ha' (T,T) = {u E H" (T. ,T):u satisfies 1(5 ),
1

and for 5 1 > 0, 5 2 > 0, a > 3 set

(3.22) H51a 'P (T,,T) {u E Hc' (T.,T):usI . satisf ies 11(5),

where the properties 1(5 I )  and 11(52) are defined as

follows.

We say that u E Ha'P(T*,T) satisfies I(6I) if
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(3.23) for each t E [T...,T], Iu xx(t,' )i > 0 and

Ca (,T.,.,T,u)sup a'Tu ( , i 1

tE[T,,T] xx

We say that u E H 'C(T,,T) satisfies 11(52) if

2

(3.24) for each t E [T..,T] 3 an open interval It c I

such that

(3.25) - (t,u) inf {lu (t,x)l• 11I 1 2 } > 0 andXEIt X

(3.26) sup t uj 5 2' where

tE[T ,T ] L '

(3.27) gu(tu) sup{lu x (t,x) l+ lu (t,x) }.
xEI xxx

Remarks. From Thms. 2.2, 3.4, and the Sobolev Embedding

Theorem we have that (3.23)-(3.27) are well-defined, since

for a > 1, u E H('(TeT) u E C0([T,,T];H ), and for

a > 3, u E Ha'P(T,,T) - uxxx E C 0([T,,T]x ). Membership

in these subclasses does not depend on absolute magnitude.
For u (Ha{ it

For u E ,5 it follows that C - u E H {H

for any nonzero constant C and the same 51{51 and 62}.



25

4. A Priori Estimates

Let u(t) u(t;u 0 ,f) and U(t) = U (t;U",P f) denote0 0
the solutions of eqs. (2.14) and (2.17), respectively. Define

e(t) = u(t) - U(t),

(4.1) P(t) = P U(t) - u(t),

e(t) = P u(t) - U(t).

In order to analyze the a posteriori error estimator in

Section 5 foj ttneaindepen4ent space meshes, we require esti-

mates of the form

119(t)IIE : O(h l)

(4.2) as h - 0; a! > 1, C 2 > 0,

t 0
ifet(t) 0 Oh

with similar estimates needed with a2 > 1 for time-dependent

meshes. Estimates of this type for Galerkin approximations of

time-dependent equations have been obtained by many authors

(cf. [9], [10], [17], [18]), usually as a means of bounding

some norm of -Le for j ! 0, and often where the regularity

of the exact solution u is given implicitly by norms of u

appearing in the estimates. To clarify the connection with

section 5, throughout this section we shall assume for

simplicity that

(4.3) P is a M(X) - rogular mesh family,
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and that our choice of discrete initial data is fixed as

P Pu; E P, i f u 0 E D(L),

(4.4) U0' =

P : E P, if u D(L).

In a manner similar to that used in [9], other choices

for U0  can be handled, but we require (4.2) to hold uni-

formly as t - 0 for our smooth data estimates valid on

[0,T). Note that for u0 E D(L), UL (0) = PAU (0) by (2.9).0t 0ot
The main result of this section is

Theorem 4.1. Let a,P satisfy (3.1) and a f 4.

Assume (4.3) and (4.4), let 0 f T, < T, and u(;u 0 ,f) E

Ha'P(T,,T). Then 3 a positive constant C (depending on

the functions a and b, constants X and T, but not

on TA, u0 , f, or u) such that for each A E P

(4.5) 11e(t)II E  f C h 1 (A)C(CETPT*,Tu)1

(4.6) Ie t(t)lI 0  ! C h 2( )Ca(P,T*,T,u) 
V

where

(4.7) 01 1 min(a,2),

Sa-K, if a : 2,
(4.8) a2 {max(2-K,a-2), if 2 < a f 4.
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Proof. For each a and , let u0  u1 +u 2  be the
0 0

a,p -dependent decomposition of u0  given in (3.18). Then

u + u2 + u3  solves eqs. (2.14), where

1 1
u u(;u 0 ,f),

2 2
(4.9) u u(;u010),

3
u 3 0.

Similarly, we decompose the solution U of eqs. (2.17) as

U = U + U2 + U3  where

, U(;U1, P0 f); U1 = 1
U 0 ,G(;0  U0  Puo,22, ; 2 2 0

(4.10) U2  U(;U 0G; 0P0 U0  5

U (U3,0); U3 = U 1 UO

U3=U(;0  U0  U U - U2 .

We then have

3
e(t) = e M (t); e m(t) = um(t) - Um(t), m = 1,2,3,

m=1

3
p(t) = I Pm(t); pm(t) = P um(t) - u (t),

m=l

3
G(t) = e em(t); qm(t) = P Um(t) - Um(t).

m1 1

Using the t-independence of the operators L, L and

subtracting eqs. (2.16) from eqs. (2.15) we get
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3 3
B( et(t),(P> + B(e (t),) 0 - ; V t,p E (0,T) xS,

(4.11)

0j + l  1J i j+l 0 1

at'

a-- -1  1 (t), > + B( - 8 t),p ) j < J-. (t), p>;

(4.13) V t,,p E (0,T) x S,

81(0) 0, j = 0 or 1,

0t(0) (P -P )u (0).
t lo0t

The applications of discrete smoothing Lemma 2.2, spectral

representations, and the technique of energy estimates in

eqs. (4.11), (4.12), and (4.13), respectively, enable us to

demonstrate (4.5) and (4.6) for each of the three components.

The triangle inequality then completes the proof of the

theorem.

We first note that the choice of U0  in (4.4) and the

decompositions (3.18), (4.9), and (4.10) show that for
2 3 U2 U3

= a, u = u U = U = 0. It therefore suffices to

show (4.5) and (4.6) for the m = 2,3 components only for

P< a.

Specifically, we shall show that for t > T,. > 0 and

•~~~ -a .. . .
, . .
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(4.14) l e (t)J i c .'

(4.15) le 3(t)l CU + T + 2 0 ,

t 0)

(4.16) 112 (t)IIE C h ( l + T,(a+l)/ 2) !(u2 0 ,

Ie 2 C h 2 1+ T c l 1
t UOa 0.G

and for 0 5 t < T and a -

(4.18) ile (t)li C hu!Ijull (0,T)
E a+2,(a+2)/2,

(C 2jjulj(O,T)
(4.19) liet(t)110 < C h Iula+2,(a+2)/2.

It follows from (3.18), (3.20), (4.4), (4.7), (4.8), (4.10),

Lemma 2.1, and the triangle inequality that for 3 < 1 < a

(i.e. u0  f D(L))

(4.20) JUo31 0  11p 0P O C h2 11 l min(h h a

MCR (O,f),a

and if 1 5 < a (i.e. u0 E D(L))

3 2 0 +
(4.21) 1 II 0 I(P -P 0)u0 + (P 0-PI)* 10 :-i C h {llu 12 + 11 12

C - min(h ,h ) {Ilu 0 1 41+ + M CR(0,f) }.

Also, since u E H +2'(a+2/2(,T) for ! _ a, we have by

Thm. 3.2 that
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( 4 . 2 2 ) u I 0 T :1 0 T 0 ( T ) }
• ~+2,(a+2)/2 + ,/

Using (4.20)-(4.22), the estimates (3.14) for u

and u0,2 and the definition (3.9) of C in (4.14)-(4.19),

we see that the demonstration of (4.14)-(4.19) will complete

the proof of Thm. 4.1.

We shall make use of the following simple lemma.

Lemma 4.1. Let 0 - 1 < Y 2 and 0 < T, -< t.

Then t -l 1 + T,

We first demonstrate (4.14) and (4.15). By (4.9),

(4.10), eqs. (4.11), and Lemmas 2.2 and 4.1 we have that for

a > 1 and t i_ T, > 0

(4.23) i1 3(t)lIE IU 3 (t)II f- C t-1 /21U3I 0  n: C(I+T, )

IIU311
0 0'

t at 0 uO 0 5 C(l+TT (a+l)/(4.24) :1et3 ( t ) II0  = !I , U 3(t)II0 C t-llu [0 _< C I T ( + ) 2.

which are (4.14) and (4.15).

2 2 2
Because e satisfies eqs. (4.12) and U0 = P0u0,

spectral representations may be applied to obtain (4.16)

and (4.17). A simple interpolation argument leads to the

following slight variation of [9, Thm. 3.1].
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Theorem 4.2. There exists a positive constant C such

that for j _ 0, 0 <_ s f- 2, and t T... > 0

& .e 2  h s  s+2j)/2, 2 1(4.25) e2 - (t)!!o  < c T (  ;uo 0,0.

It is easily verified in (4.8) that

1 E (0,2), if a E (1,3),

2 2, if a E (3,4].

The application of (4.25) with j 1 1 and s = 1

or 2 yields

(4.26) Ile 2 (t)Il - C h 1  -(a+l)/2 lu I 0 ; if I < a < 3, and
t o0

(4.27) Ile t(t);i < C h 2  T- 2 11uIl1 0 ; if 3 < a :- 4.•t 0 0-°

The estimate (4.17) then follows by applying Lemma 4.1.
2 2 2

To show (4.16) we set ,p = 02 = p + e in eq. (4.12)

and get for t > T,. > 0 and any s E [0,2], s 0 1/2

1162(t) 2 < e 2 (t), P2(t) + e2(t)>

by the triangle inequality, (4.1), and Lemma 2.1

2t 2 + 2()!0:5 2 (t)o{C hSllu 2(t)ll + I e 2 (t)1 0

by Lemma 3.1 and Thin. 4.2

h2s t-(Sl) 1u2112 and hence

I II I "1111 I I i I I -- _ mm i I I m 0 ' 0 [F n , i T w
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2(t); < C hs -(s+l)/2,, 2
(4.28) C - T., u 1

E 0

Setting s aT1  min(a,2) for 1 < a f- 4 and using

Lemma 4.1 we get (4.16).

We proceed to demonstrate (4.18) and (4.19) directly

via energy estimates. These results can also be obtained

for some, but not all a E (1,4] satisfying (3.1) by

applying Thms. 2.1, 2.2, and results given in [17] in

arguments similar to (4.25)-(4.28).

Setting p = 2 1(s) in eqs. (4.13) for j = 0 and
5

0 < s ! t < T, we get

(4.29) 2;! 1 (S)fl 2  + 2B(e (s), e (s)) 2<p (s)8 1(s)>.
s 0 s s s

Using the t-independence of the symmetric form B and the

fact that 81(0) = 0, integration of eq. (4.29) on (O,t)

followed by the application of the Cauchy-Schwarz inequality

yields

1 2 1 t1 2(14.30) e1 (t)II E f II(I-Pl)U (s)II0 ds,(4.300

from which we obtain
1 1 (O,T)

(4.31) le I(t)IE _ CUI(I-P )u 1 0,o
1 t 0,0

For 1 < a _< 2, u E H a+2,(a 2)/2(0,T) n H 0((O,T);H 1
0

and so by Lemma 2.3 and (14.7)
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(4.32) ilel(t)lE < C h 1 Ilu 1 (0,T)
S-a+2,(+2)/2'

which is (4.18) for 1 < a 2. The result (4.18) for

2 < a <_ 4 follows trivially.

It remains to demonstrate (4.19). For 1 < . - 4,

by (2.9) and (4.10) we have that for 0 f- t < T

1 1 11 12

(4.33) e (t) e 11l(t) + e 1(t), where

ll1t - 1lP)t~)
(4.34) e(t) (I-P )U 1t), and

t 0 t

12 1lt)
(4.35) e1 (t) La1 (t).

By Lemma 2.1, Thm. 2.2, and K >_ 1, we have that for

1 < a:5 2, a 9 3/2

(4.36) le1 1(t)d < C hl - " sup ju (s)" l a -
K

t  0 sE[0,T] t 'K

d 1 (0,T)

a-K 2-K
and similarly for 2 < a < 4 with h replaced by h

By (2.11) and (4.18) we also have that for 1 < a _E 4

12 jT1 -Kj 1 a - K
(4.37) :e t (t)I = IAL (t)1I < C h - ie (t)lt E  - C h

Hu1 11(0,T)

a+2, (a+2)/2.

By the triangle inequality and the definition (4.8) of a 2,

we see that to complete the proof of (4.19), it suffices to

show
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(4.38) leI(t)Y < C h a - 2  42(10 ) for 2 < 4.
1 .1 2,(a+2)/-

We have that e (t) (-P )u (t) + et(t).it t

It follows as in (4.36) that

1 a-2, 1, (0,T)(4.39) i(i-FP)uI(t) < C h-u• - 1 t a0 - +2,(a+2)/2"

1
Setting 29 (s) in eqs. (4.13) for j 1 and

s

0 < s <_ t < T, we get

(4.40) d d91 (S!2 !1e 1 (s) 1 3 s E 1(s>-44)l,!()9 9 ° ] (s)'1  + = 2<z I (s), 9lCs)>.
ds s 0E ss s

Integration of (4.40) on (0,t) followed by the use of the

Cauchy-Schwarz inequality yields

2 2I -(O) 2

(4.41) e (t)i 0  < t 9 0)ii + C II(-P)U (s)II2 ds.- f ss 0

1 1
Using 91(0) = (P1-Po)u (0), we get

(4.42) 19 t(t)1o < + cu 1 ((P)- +u (o)ilo+ ,(I-P0)ui(0)10 o

JI(1-P )ut1t11(0,T)
1 tt 0,0

Using Lemmas 2.1, 2.3, and Thm. 2.2 we get from (4.42) that

(4.43) 191 < C a-2 lu1 (0,T) for 2 < a 4.(4 43 !1 t i 0  -< C ha +2,(a+2)/2- ,

The proof of (4.38) and Thm. 4.1 is then completed by using

(4.39), (4.43), and the triangle inequality.
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Remarks. The following consequences Thm. 4.1 are

relevant to the estimates in section 5. Define the function

by

(a+l)/2; 1 < a 2,

(4.44) K(a) =3/2 2 < a _ 3,

2 ; 3 < a 4.

For fixed a E (1,4] and K E [i,<(a)) set

(4.45) K(Ka) -

2

It can be verified from the result of Thm. 4.1 that - a

positive constant C such that for each E E P and all

t E [T.,T)

(4.46) h -K(A){le(t)i E + let(t)0 1 0!

(4.47) h-K(A) E(t) E
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5. A Posteriori Error Estimates

All notation used in Section 'u is adopted throughout

this section. The solution classes Ha'P(T,T) and
51

Ha', (T,,T) are as defined in (3.21) - (3.27).

We begin by listing for easy reference the assumptions

concerning solution regularity, mesh family type, and

discrete initial data choice which will lead to our results.

u E Ha' (T.,T); 0 f7.. T< , a and P satisfy

(5.1) (3.1) and a : 4. For A E P, U is chosen according

(4 .4 
) .

(5.2 Ha'(T,T); 5 > 0. P is a <(X)-regular( 5 . 2 ) 5 1!  1'-

(MUesh faznily.

(5.3) u E H a'P 2(T..,T); a > 3, 51 > 0, 62 > 0.

(5.LL) K E [l,K(a)); c(.) defined as in (4.44).

Whenever they appear, unless otherwise specified

(5.5) C,C 1 ,C 2 , etc. denote positive generic constants which

depend on the functions a and b, constants X and

T, but not on T,,aP,&l,52 ,u,U, or the data u0

and f.

We now define certain concepts needed in our a posteriori

analysis which are related to those developed for elliptic
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boundary value problems in [21, [3], [41., and [5].

For 0 s! T,. < T let

(5.5) g: A -9 g E C 0([T..,T); H 0

A E P.
(5.7) t6A ~ E C 0([T...T); S(A))

We define the local indicators

(5.8) n. i(t,g 11 )2 JIL! (t) g- tI '
(12a.i) 1

t E ET*3T), 1 sj 5! N(,

and the associated estimator

5.)E(tg A(A A A)gA) /

t E [T.*,T).

By (5.7),

(5.10) L (t,x) -a (X) b (t,x) + b(xYA, (t,x);
x x

t,x E [T.,,T) x Ii, 1 f: j :5 N(CA) ,

and therefore (5.8) and (5.9) are well-defined.

Let 4) E C 0C[T?.,T); 0 and* g,(A be as in (5.6) and

(5.7). We say that a quantity EC-,g,o) is anupe

estimator for 114, - olEon [TJ,,T) if 3 positive constants
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C1 ,C 2 ,h such that for 6 E P with h(A) : C1 h* and all

t E [T,.,T)

(5.11) II()- rI E  c 2 Eft,K ,

where C1 and C2 are as in (5.5) and h* depends in

general on the mesh family P{i.e.g. on K} and on the class

in which t resides {i.e.g. on a,P,61,5 2}.

If under the same hypotheses 3 a constant a > 0 such

that

A AA
(5.12) hj'(t) - 'k(t)l1E = E(t,g , )(1 + 0(h )) as h - 0,

where the constant in the 0-term is as in (5.5), then we

say that E(.,g,q) is an asymptotically exact estimator

for ((; - kI E  on [T*,T).

Let u and U be the solutions of eqs.(2.14) and

(2.17). We take as our primary estimator for the error

lu-U!E the quantity E(.,f-Ut,U), defined according

to (5.8) and (5.9). The principal results in this section

are the following two theorems.

Theorem 5.1. Assume (5.1), (5.2), (5.4), and let

= (K,a) be as defined in (4.45). Then E(',f-Ut,U) is

an upper estimator for iu-UiE on [T,,T), with h* 6
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Theorem 5.2. Assume (5.1) - (5.4) and let p. be as

defined in (4.45). Then E(',f-UtU) is an asymptotically

exact estimator for !ju-UIE on [T*,T), with

h* = sin(6 6 21/4) and a = r.

E(.,f-Ut,U) is based upon local, computable residuals

and can therefore be used to monitor and control the space

discretization error in an adaptive FEMOL procedure. While

h* may be quite small, its existence indicates that

E(.,f-UtU) will perform well as an estimator for a given

class of data, and not be overly sensitive to changes in solution

behavior during the time evolution of a problem.

The proof of Thms. 5.1, 5.2 is based upon interpreting

ut(t) as given data, eqs. (2.14) as a continuous, one-

parameter (t) family of elliptic boundary value problems:

For each t E [T,,T), find u(t) E D(L) satisfying

(5.13) Lu(t) f(t) - u t(t),

and employing the error Ilp(t)II E and estimator E(t,f -ut,Plu)

associated with (5.13). E(.,f-ut,P1 u) is defined according

to (5.8) and (5.9) and is not computable, and )lpI!E  is not

of primary interest, but up to higher order terms in h we

have E(',f- ut,Plu) - E(,f- Ut,U) and "P1E - IIeP E .

Specifically, the proofs of Thms. 5.1 and 5.2 follow

from the application of Thm. 4.1 and the demonstration of

the following sequence of lemmas.
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Lemma 5.1. There exists a positive constant C such

that for each A E P and all t E [T*,T)

IE(t,f-U4, U ) - E(tf-utIpAu)l -< Ch(A){I (t)jj +Ilet(t)I .

Lemma 5.2. Assume (5.1). Then E(.,f-ut,Piu) is an

upper estimator for Ilp! E on [T...,T), with h* = 1.

Lemma 5.3. Assume (5.1), (5.2), and the result of

Lemma 5.2. Then 3 a positive constant C such that for

each A E P and all t E [T,,T)

E(t f-ut,P AU) a Ch (A) C (P,T. T u).
S- 81 a

Lemma 5.4. Assume (5.1) - (5.4). Then E(.,f-ut,Plu)

is an asymptotically exact estimator for llPll E on [T*,T),

with h*= 5 21/4, p. defined as in (4.45), and a p.2

Before proving Lemmas 5.1 - 5.4, we show that the

result of Thm. 5.1 follows from the validity of hypotheses

(5.1), (5.2), (5.4), and the results of Lemmas 5.1, 5.2,

5.3, and, if the result of Lemma 5.4 also holds, then we have

the conclusion of Thm. 5.2.

To simplify notation we suppress t, and also write
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E = E(t,f-Ut,U ),

2
(5.14) E2 = E(t,f- ut,P]Au),

C Ca (P,T*,T,u).

By Lemma 5.3 we may write

(5.15) 1 1E1-E2 1 E1  +E 1 -E2 1
(5.15) 1 E _< 1 + E

2 2 2

which after application of Lemma 5.1 and, again, Lemma 6.3

becomes

(5.16) 1 C I{hK l11IlE+Ie t 10}

E C8h1-E1 1 C111lhIle-y

2 a

Under assumptions (5.1), (5.2), and (5.4), we may apply the

consequences (4.44) - (4.47) of Thm. 4.1 to (5.16) and get

(5.17) 1 - C5 < E 1 + C6

2

Now, by the definition of PI: H1 -0 S
1 E0
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and so by applying the triangle inequality to e -o + G

we have

(5.19) 11PIl E _< 11e 11E 5 IIpIIE + 1191E .

By Lemma 5.3, (5.19) becomes

(5.20) E 1 Ie! < E2 ( P +E + CC h - '

2 - E- 2 - E

and using (4.44) - (4.47) as in (5.17)

(5.21) E2  -r.- IleilE < E2 ( -r - C61 h 2

Setting h* = 811/, we see in (5.17) that 3 a

positive constant C1  such that for h :- C h*,

(5.22) 2 E 11( 1 + O(hL)) as h - 0,

with constants in O(h ) as in (5.5), and therefore from

(5.21) we get

(5.23) Ilell - E !52 (1 +O(hp)) as h - 0.E 1E2

The demonstration of Thms. 5.1, 5.2 now follows easily from

the results of Lemmas 5.2, 5.4, respectively.

We proceed to prove Lemmas 5.1 - 5.4.
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Proof of Lemma 5.1. To further simplify notation we

write u~ P u and for 1 :5 j :5 N(A), j.(U) = n.(t,f-U~ AU

and rn.Cu ) i.t,f-ut 1 By definitions (5.8), (5.9),

and the triangle inequality we have

(5.24) IE'-E'( N - 2
1 2j=J.

N h

where

Q = ILU+Ut -f11O, 1,

I~u +utfi1 1  1 j 5 SN.

Using again the triangle inequality, te N-dimensional

Cauchy-Schwarz inequality, and (5.8) we get from (5.24) that

2 h ))/2

(5.25) IE 2- E( 21s 2(.1 1 (JILeI 2 i+11'et 2
1 (~j12i '1J 0 '1 jJ

(Y)2U +n(ul)) 1/2

It then follows from (2.1), (2.2), (5.9), and (5.10) that

3 a positive constant C such that
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(5.26) IEl-E2I f- Ch(A){IlelIE+Ile 110}{El+E2  ,

from which the desired result follows.

Proof of Lemma 5.2. By Thins. 2.2, 2.3, and 3.1, the

assumption (5.1) guarantees that u E C 0([T*.,T); D(L)).

Interpreting eqs. (2.14) as in (5.13) and applying [2, Thm. 7.1]

(stated for U E C 0(I) but valid in fact for u E H

cf. also [4]), we have the desired result.

Proof of Lemma 5.3. Letting again u = PAu, we note

that for t,x E [T*..,T) x I,; 1 z j 5 N

(5.27) Lu A(t,x) - (f(t,x) -ut(t,x))

( Cut- f-axuA+buA )(t,x) (aux-aPx+bP)(t ,x)•

It then follows from (5.8) that 3 a positive constant C

such that

2 A 2;

(5228) 7 (t,f-ut,u ) Ch.{Ilu (t,.)l 2  - p(t) I

1 _ j f- N.

Summing for j = 1,N yields

(5.29) E2 (t,f-ut,u) + Ch2 (2 Ch2(A)1juXX(t,')!! ,
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which by the K-regularity of assumption (5.2) and the result

of Lemma 5.2 becomes

(5.30) E2 (t,f ut,uA) ( C h2K(A),,Uxx(t,.)j,2

\l+Ch 2 CA) 0

C
Since by (5.2), I "uI 0 _ 51, Vt E [T,T), we have

from (5.30) the result of Lemma 5.3.

We omit the proof of Lemma 5.4, as it is completely

analogous to that in [2, Thm. 7.3], where a sequence of

six asymptotic equalities related to a decomposition of the

indicators led to the desired result (cf. [8] for further

details). Roughly speaking, the properties (3.24) - (3.27)

assumed for asymptotic exactness require that the solution

is smooth and not relatively flat at any time t E [T,,T).
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6. A Posteriori Error Estimates Revisited

The purpose in using a posteriori, rather than a priori

estimates to bound the error due to the numerical solution

of differential equations is to obtain more realistic bounds.

We expect that restrictive assumptions on admissible solution

classes and mesh partitions need to be imposed in order to

guarantee that an estimator is asymptotically exact. However,

it is desirable that an estimator is reliable, i.e. an upper

estimator, under far less restrictive and more easily

verifiable conditions.

We shall show that if the estimator E(.,f-Ut,U)

introduced in Section 5 is modified through the addition of

a term, which takes more fully into account the t-dependence

of the problem and is of higher order in h, then we obtain

a reliable estimator for a class of problems occurring often

in practice, with no restrictions on the mesh family or mesh

size.

We assume that the solutions u( ;U0 ,f) and

U( ;Uo,P 0 f) of eqs. (2.15), (2.16) are such that

(6.1) fft E C 0([0,T);H0 )

(6.2) u0 E U(L), and

(6.3) U0  PlUo, for 6 E P.

• . . . ~ ~~~~~~. " ,, s ' l| I I I I i-
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Note that from (6.1) and (6.2) we have that

0 0 0u E C ([O,T); V(L)) and u t E C ([0,T); H )

22
Define C =an 2 (a as in (2.1)) k ~ inf

1 H 1 1 ' 2

00

For t E[0,T) and E P we define the estimator

(6.14) E~~UA t E(t,A), where

tt

(6.6) E (t,tA) h(~ Cts SfUA' )ds} /

(6.7)

3 (t,A) =,if t > 0,

E(0,t At(0)+Lu -fCO),0), if t =0.

By (6.1), (6.2), and the fact that U6E CQO((0,T); S(D)) we

see that E~t,f -Ut,U) is well-defined and computable,

given Ui~ Note that
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(6.8)

A() h. 2 ~112
E2 (t,6) h(6) I--- C(t-s) i (U L+LUSA- (s,) 2 dj=! 12aj foC0

O(h 2(A)) as h(A) - 0, provided that u is

sufficiently smooth,

and that by (2.9), (6.1) - (6.3), and Lemma 2.1

(6.9) E(OA (0)Lu ,

N(A) h. 2 1/2= [ II(I-P M(uo- f(O))I[ I.
j=l 10 0'

f Ch(A){Ilu 0 112 + IIf(0)110 }.

Suppose that for s > 0 arbitrarily small, we either

assume

(6.10) in addition to (6.1), (6.2) that u0 E H 2+E and

f(0) E H6 , or that

(6.11) t ? T., > 0 and h(A) : T/

Then from (6.5), (6.7) - (6.9) we see that

(6.12) E(t,f-UA,U A E(t,f-U ,U A ) + O(hl+F(A)) as h(A) - 0.

Since the exponential decay rates in E 2 (t,A) and

E 3(t,A) are overly pessimistic for any given problem, and

3. .. " _ , . . . . ,,', ..
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since E2 (t,A) is related to the t-dependence of the local

indicators {Tlj} , ' a practical strategy for the

implementation of E(t,f-Ut,U) would be to use only

E(t,f-Ut,U), and to monitor some measure of {Tj }j~,N(A)

on a time interval [t-C0 h, t], for some positive constants
0*

C0 and y. We give no details here.

We shall show the following result.

Theorem 6.1. Assume (6.1) - (6.3). Then E(',f-Ut,U)

is an upper estimator for Iu-UH on [0,T), with h* 1.

Proof. The proof is based on a different decomposition

of the error e = u - U than that used in Section 5. We

write

(6.13) e(t) e1 (t) + e2 (t), where

(6.14) e (t) v (t) - U (t),

2 vA
(6.15) e (t) u(t) v (t),

and v A E C 0([O,T); D(L)) is defined by

(6.16) LvA (t) = (f-U )(t); t E [0,T).

By (6.1) and the t-independence of the operator L, we

have that

v C 0([0,T); D(L))
at

and



(6.17) LvA (t) (f -t )t; tE[,.t t t

From eqs. (2.15), (2.16), and the definition of P' H S(6)
1 0

it follows that

(8.18) PA8. ~ TT(t, t E [0Tj z0 or 1.

Subtraction of eqs. (2.16) from eqs. (2.15) shows that

(6.19) e 2(t) e 2 (t) + e~ 22t), where

e21 (s > B 2 1 1

(6.20)

e21 (0) 0,

22) 221
<e '(s) t + ~e (s) ) =0 ; V s t E (0,T) x HO

(6.21)

e2 (0) 2 (0).

We show that there exists a positive constant C such that

for all t E [0,T) and each A E P

(6.23) Ile1 ()1 5CEI(,6

(6 .23)Ile 21(t) 1IE 5 C E 2 (t,6), and

(6.24) Ile 22 ()1 5CE3(,A

which will complete the proof of Thin. 6.1. By (6.16) and

(6.18), the estimate (6.22) follows from the result in
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[2, Thin. 7.1], as in the proof of Lemma 5.2.

From the t-independence of the operator L and
XlS/2 2

eqs. (6.20), we get that the function w(s) = e 1 e (s)

satisfies

(5.25)

-W sS),.t> + B(w(s),P) - I' <w(s),6> se

1
Vs, E (0,T) x H0 ,

w(0) = 0.

Setting t = 2w (s) in eq. (6.25) yieldsS

(6.26) 2'lw (s ))2 + d f w 2 1!1 2
' 0 ds { Ews - lw(s)%2

-2 s/2 <,(s),w (s)>.
s  s

Integrating (6.26) on (0,t) for t E (0,T), applying

the Cauchy-Schwarz inequality, and using w(O) = 0 yields

(6.27) I2w(t)I 2 2 I1w(t)I 2 X1l
I~~w~t~~ltE - l-(wtf0  -e sj(s)luds,

E ~ ~ 0 o

which by the definitions of w,X1 , and C becomes

21 -C(t-s) 1 2}i/2d

(6.28) le21 (t)IE< {ft o e les (S)II •ds}

By (6.18), B(e1 (s),*) = 0 Vs,* E (O,t) x S(A), and so
s

by a standard duality argument we have that
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(6.29) Ile2 (t)II E ChC6){Jfe-/tS lie~ C s)IE ds}

Using the result in [2, Thin .1], as in the demonstration

of (6.22), we get (6.23) from (6.29).
Xs22

Defining now z(s) =e 1 e 22Cs), from eqs. (6.21) we

get

(6.30) <Z()(>+ 2~~s "h )0 0;

s 2~

Vs,O E (0,T) x H09

zCO) = e 2(0).

Setting < 2z C s) in (6.30) and using the same

arguments which led to (6.28) yields

(6.31) Ile 22(t)I1IE 2 / e- Ilie 2 0 )11 E

Consecutively setting =z(s) and 2z5 C s) in (6.30)

and integrating on C,t) yields

2 2 2
(6.32) 2t{Iiz~t)iI E llIz~t)110 P f lz(0)11 0 3

which by the definitions of z, ),l, and C becomes

22tll e-Ct/2 2
(6.33) lie (I 1/ Ilie2 (0)110, for t > 0.

It follows from (6.3), (6.14~), and (6.15) that
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(6.314) M~e 2 (0),4e) =0 V* E S(6),

which again by a standard duality argument shows that

(6.35) Ile 2 (0)11 0 < Ch()e 2 (0))1E,

and by the result in [2, Thin. 7.1] that

(6.3) Il 2 0)11E : CE(0,Le 2(0)-0,0)

CE(0,U AC0)+Lu -f(O),O).
t

Combining (6.31), (6.33), (6.35), and (6.36), we have (6.214),

thus completing the proof of Thin. 6.1.



54

7. Computational Procedures and Examples

In this section we outline the main features of a

general FEMOL program which includes a posteriori error

analysis. The program is of a research type for assessing

various aspects and performances of the FEMOL procedure.

While it is not presently for commercial use, it includes

many user-oriented features employed in available commercial

software. The experiments using the program were directed

toward the evaluation of the efficiency of the approach and

the applicability of conclusions based upon the asymptotic

analysis presented in Sections 4-6.

The discussion here is principally oriented to

selected examples, in which the exact solutions are available.

These solutions have forms typical of those arising often

with systems of linear and nonlinear parabolic equations

used in various applications, and include decay and sharp

transitions in time, oscillations, and travelling waves.

The model problem considered is that given by eqs. (1.1),

where the coefficients a(x) = cosh(4x-2) and

b(x) = sinh(2x) are as pictured in figure 2, and the

functions u0 , f, and g are chosen to be the smooth,

compatible data such that the exact solution u of eqs. (1.1)

is as given in each of the examples below. The theory in

sections 2-6 was presented for the case when the boundary

data g = 0, but holds more generally for eqs. (1.1).
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For t > 0, our goal is estimate !jje(t,')ljj with E(t),

where e = u - U is the space discretization error, the

computable a posteriori estimator E(.) is as defined in

(1.4) and (5.9), and the norm 111 II! is as defined in (1.2).

The theory in sections 2-6 was presented for the estimation

of Ile(t,-)!IE, where the norm ' is defined in (2.4),

but we note that up to higher order terms in the space mesh

size, !le(t,')IlE - IIe(t,')III .

Our evaluation of E(.) is based upon the behavior of

the effectivity ratio 0(-), defined in (1.5), and we shall

examine how it depends on the relative error E REL(), as

defined in (1.9).

The theory given in Section 5 showed that for sufficiently

(very) fine partitions of the interval (0,1), 1/0(t) is

bounded uniformly for all t in a time interval of interest,

and 0(t) - 1 as the partitions are refined. We shall see

that 0(t) is near 1 for practically any partition of (0,1)

in the examples, and in fact appears to converge very rapidly

to 1 as the partitions are refined.

Before presenting our results, we first discuss some

of the relevant aspects of the computational procedures used

in the experiments and more general problems. For further

details we refer to a following paper [7] and [8].

All computations were carried out in double precision

arithmetic by the research program FEMOLl, which was

written and implemented on the IBM 370 System in the Division
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of Computer research and Technology, NIH. FEMOLl has the

capabilities to solve coupled systems of linear and nonlinear

parabolic PDEs with piecewise linear elements in one space

dimension, with smooth or unsmooth initial data, and general

separated end-point boundary conditions. The program has

four basic stages of operation, consisting of (1) the processing

of control information, (2) the assembly of matrices, (3) the

initialization of data, and (4) the time-integration of the

resulting ODE system. Many of the standard user-oriented

features and logical switches employed in these four stages

were borrowed from existing software, much of which was

surveyed in [16]. When discontinuous changes in the space

mesh are allowed, decisions concerning these changes are made

adaptively and looping occurs in stages 2-4. We shall restrict

most of the discussion to those features relevant to the

experiments conducted here.

In the control stage, flags are set which govern the

number and type of PDEs solved, the space mesh used, and whether

or not the error is to be estimated, the true error is to be

computed, or adaptive mesh construction is to be employed.

Here, the target time points for output are also determined.

In the examples to be presented, 100 equally spaced time

points {Tm}m=l,0O0 were distributed over the time intervals

of interest, at which E, lie Ii, EREL, and 0 were computed,

but other selections for output are possible.
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As in the computation of E, 11je Ili, EREL, and 0,

FEMOLl uses standard two-point Gaussian quadrature in the

assembly stage to compute the mass and stiffness matrices

and load vector needed for the reduction of eqs. (1.1) to an

implicit system of ODEs. This process of course introduces

the effects of the numerical integration into the computations.

After minimal testing, this effect was accepted for our

experiments with time-independent space meshes. In some of

the computations performed with adaptively constructed meshes,

however, these pollution effects were more significant and

an alternate procedure had to be adopted (cf. a following

paper [71).

With the smooth, compatible data in the examples here,

the discrete initial data was determined in the initialization

stage as the standard finite element approximation of the

solution of an elliptic boundary value problem. When the

initial data is not smooth, FEMOLl chooses the linear

interpolation as the discrete approximation.

The time-integration of the resulting ODE system is

accomplished in a subroutine with a version of Gear's

variable-step, variable-order backward differentiation

formulas which we modified to efficiently handle matrices

with banded structure. The ODE solver is essentially

equivalent to that in [12]. To ensure that the effects of

the time discretization did not pollute the results, very
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stringent error requirements were placed on the time

discretization scheme. The ODE solver used places equal

weights on the N-1 components {U(t,x.)} jl,N I  in

attempting to control the relative time discretization error

per step. These are not the best criteria, in that each

component is given equal weight and that an error per unit

step tolerance probably has more meaning. While some minor

modifications in this procedure were made, these

inefficiencies were accepted for the sake of illustrating

the theoretical results. We experimentally adjusted the input

tolerance until the discrete time derivative Ut  in each

example changed by less than 10- throughout the time

intervals of interest. This required relative error per

step tolerances on the order of 10 to 10 - . We emphasize

that these stringent requirements should not be used in

practice, but were made here to isolate the effects to be

stidied.

One of the main purposes in studying a posteriori error

estimates in the FEMOL solution of PDEs is the development

of more efficient algorithms. However, because of the

stringent requirements set above and the mentioned, and other

not mentioned inefficiences which were accepted for our

convenience, a quotation of CPU times used in the examples

is not relevant.

As a final computational note, we remark that all of
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the logical switches and capabilities of FEMOLl can be set

for a given problem by supplying subroutines for the problem

data and modifying less than 20 cards of input data.

Example 1. For 0 5 t 5 3 the exact solution u of

eqs. (1.1) is taken to be

(7.1) u(t,x) = u1 (tx) + [I + Ltanh(10t-ll)] u2(t,x),

2 2

where

(7.2) ul(t,x) = 1 - exp (lot+.l) , and

(7.3) u 2(t,x) = 2 sin(nx) + 2 cos(2Trt)sin(27x).
1

For 0 5 t :5 .9 u completely dominates the behavior

of u and u decays in t (cf. figure 3(a)). For

.9 < t < 1.1 u undergoes a sharp transition, and for

1.1 5 t ! 3 the oscillatory character of u2  is dominant

(cf. figure 3(b)).

The FEMOL was implemented in this example for a

sequence of three uniform space meshes, using 10, 20, and

40 finite elements. Figure 4 shows the behavior of the errors

in time, and the linear rate of convergence is apparent.

For t > 1 the errors in this sequence oscillate about

the 10%, 5%, and 2.5% levels. Figure 5 illustrates how

well the estimator E(.) works. For any of the meshes and

all t E [0,31 we see that the effectivity ratio 0(')

satisfies
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(7.4) 10(t)- 1i : .07,

and that with 40 elements

(7.5) te(t) -l 1 .005; Vt E [0,3].

In addition to these unexpectedly good results, it

appears that

(7.6) 0(t) = 1 + O(N -  ) as N - ; Vt E [0,3],

a result much better than that which we could prove in

Thm. 5.2.

Example 2. For 0 f t 5 .1 the exact solution of

eqs. (1.1) is taken to be that defined in (1.8), namely

1 1

(7.7) u(t,x) = 1- + 1 tanh[2P(x-10t)]; P = 20.

The solution is a wave with approximate front width

P- which moves in the positive x-direction at speed 10,

and is as pictured in figure 1 in section 1.

As in Example 1, the estimator E(.) was tested by

implementing the FEMOL for a sequence of uniform space

meshes, using here 20, 40, 80, and 160 finite elements. In

figure 6 we see the oscillatory temporal character of the

error for 20 ahd 40 elements, due to the inability of the

mesh to resolve the wave front. The error again appears to

converge linearly for all t, provided that N a 40. Note
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that for N : 20(40) the error oscillates about the 50% (25%)

mark. In figure 7 we see that even in the case of 50% error,

the effectivity ratio 0(0) satisfies

1
(7.8) - - O(t) 5 2; Vt E [0,.1i.

Figure 8 illustrates that with an average error of about

25%, for almost all t E [0,.1]

(7.9) f~ )l 1

and that when N = 160 and the error is about 6% for each

t, we have

(7.10) 10(t)-l :5 .005; Vt E [0,.1].

The quality of these results does not appear to be

limited to the use of uniform space meshes, as experiments

with slightly nonuniform meshes in the same examples has

indicated. Also, we shall see in a following paper [7] that

the adaptively constructed meshes for Example 2 can be very

nonuniform, and yet the analogous effectivity ratio is close

to 1.

We finally remark that the norms EII and II!"fli used

in the analysis and computations were chosen because they are

the natural norms arising from the weak form of eqs. (1.1).

In applications where there is no natural energy associated

with the system, or when some other characteristic is of
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primary interest, then it may be desirable to estimate

a different norm of the error. By altering the approximating

finite element subspaces and a posteriori estimator in our

procedure appropriately, such estimates can be obtained.

Nonetheless, the above results illustrate the robustness of

the estimator E(.), even when apparently out of the

asymptotic range.
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Figure 2. Coefficients of Eqs. (1.1) vs. X
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U T.

(a) 0
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TI

U
(b)

TI -2,3....

T2 - 1.25.1.75.2.25....

T3 - 1.5,2.5....
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0 .25 .5 .75

x
Figure 3. Exact Solution u(T,X) of Example 1 vs. X

for Various T.
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Figure 4. Relative Error REL (T) in Example I

vs. T. N Number of Uniform Finite
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Figure 5. Effectivity Ratio D(T) in Example I
vs. T. N Number of Uniform Finite
Elements.
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Figure 6. Relative Error E REL(T) in Example 2 vs. T.

N Number of Uniform Finite Elements.
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Figure 7. Effectivity Ratio 0(T) in Example 2 vs. T.
N = Number of Uniform Finite Elements.
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N a 10
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Figure 8. Effectivity Ratio O(T) in Example 2
vs. T. N = Number of Uniform Finite
Elements.



68

References

1. Babunka, I., Luskin, M.: An adaptive time discretization
procedure for parabolic problems. In: Advances in comp.
meth. for partial differential equations IV (R. Vichnevetsky,
R.S. Stepleman, eds.) 18, pp. 5-13 (1981).

2. Babutka, I., Rheinboldt, W.: A posteriori error analysis
of finite element solutions of one-dimensional problems.
SIAM J. Numer. Anal. 18, pp. 565-589 (1981).

3. Babu~ka, I., Rheinboldt, W.: Analysis of optimal finite
element meshes in 1Ri . Math. Comp. 33, pp. 435-463 (1979).

4. Babugka, I., Rheinboldt, W.: A posteriori error estimates
for the finite element method. Int. J. Numer. Methods
Eng. 12, pp. 1597-1615 (1978).

5. Babutka, I., Rheinboldt, W.: Error estimates for adaptive
finite element computations. SIAM J. Numer. Anal. 15,
pp. 736-754 (1978).

6. Babutka, I., Aziz, A.K.: Survey lectures on the
mathematical foundations of the finite element method.
In: The mathematical foundations of the finite element
method with applications to partial differential equations
(A.K. Aziz, ed.), pp. 1-359. New York: Academic Press
1972.

7. Bieterman, M., Babu'ka, I.: The finite element method
for parabolic equations,II. A posteriori error estimation
and adaptive approach. University of Maryland I.P.S.T.
Technical Note BN-984, 1982.

8. Bieterman, M.: Ph.D. Thesis, University of Maryland,
1982.

9. Bramble, J.H., Schatz, A.H., Thomee, V., Wahlbin, L.B.:
Some convergence estimates for Galerkin type approximations
for parabolic equations. SIAM J. Numer. Anal. 14,
pp. 218-241 (1977).

10. Douglas, J. Jr., Dupont, T., Wheeler, M.F.: A quasi-
projection analysis of Galerkin methods for parabolic
and hyperbolic equations. Math. Comp. 32, pp. 345-362
(1978).



69

11. Grisvard, P.: Characterisation de quelques espaces
d'interpolation. Arch. Rational Mech. Anal. 25, pp. 40-63
(1967).

12. Hindmarsh, A.: Preliminary documentation of GEARIB:
solution of implicit systems of ordinary differential
equations with banded Jacobians. Report UCID-30130,
Lawrence Livermore Lab., Livermore, California, 1976.

13. Kato, T.: Perturbation theory for linear operators.
New York: Springer-Verlag 1966.

14. Krein, S.G.: Linear differential equations in Banach
space. AMS Translations of Mathematical Monographs
29, 1971.

15. Lions, J.L., Magenes, E.: Nonhomogeneous boundary value
problems and applications I and II. New York: Springer-
Verlag 1973.

16. Machura, M., Sweet, R.: A survey of software for partial
differential equations. ACM-TOMS 6, pp. 461-488 (1980).

17. Thomee, V.: Negative norm estimates and superconvergence
in Galerkin methods for parabolic problems. Math. Comp.
34, pp. 93-113 (1980).

18. Wheeler, M.F.: A priori L2 error estimates for Galerkin
approximations to parabolic partial differential equations.
SIAM J. Numer. Anal. 10, pp. 723-759 (1973).




